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Emergence of approximate translation invariance in finite intervals as a speed selection
mechanism for propagating fronts
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We introduce a velocity selection criterion for fronts propagating into unstable and metastable states. We
restrict these fronts to largefinite intervals in the comoving frame of reference and require that their centers be
insensitive to the locations of the ends of the finite intervals, thus exhibiting effectively an approximate
translation invariance. Only one monotonic front has this behavior, and its velocity is the one that is physically
selected. We present analytic results in the case of piecewise parabolic potentials and numerical results in other
cases.

PACS number~s!: 82.40.Ck, 05.45.2a, 47.54.1r
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I. THE SELECTION PRINCIPLE

In many systems rendered suddenly unstable, propaga
fronts appear. The determination of the speed of front pro
gation into an unstable state has attracted attention rece
since it cannot be achieved by simply solving the differen
equation in the comoving frame of reference on a o
dimensional infinite domain. Indeed, there are many s
solutions on such a domain, even though the propaga
front in practice always relaxes to a unique shape and ve
ity. Selection principles have thus been formulated to de
mine the observable front, without having to solve direc
the partial differential equation of motion for a range of in
tial conditions. These principles have involved concepts
linear and nonlinear marginal stability, of structural stabili
and of causality@1#, and all of them try to deal with the
puzzle of the reduction of the multiple solutions to the sin
observed one. All these selection principles examine
wave from the viewpoint of the moving front, the corr
sponding wave equation being reduced then to an ordin
differential equation involving the speedv of propagation.
This speed has a unique value if the front is invading a m
stable state, but not so for the case of invasion into an
stable state. The latter case has consequently attracted
of the attention.

The selection principles mentioned above have b
based on the study of Fisher’s dimensionless equationut
5uxx1 f (u), on the interval (2`,`) with f (0)5 f (1)50,
the statesu50 and u51 being unstable and stable fixe
points, respectively. Aronson and Weinberger@2# have
shown that sufficiently localized initial conditions wi
evolve into an observable front propagating with speedv* ,
providedf .0 on ~0,1!. This selected speedv* is the lowest
speed for which the above partial differential equation
mits a monotonic front joining the stable stateu51 to the
unstable stateu50, and it satisfiesv* >2Af 8(0). Any
monotonic traveling-wave solutionu(j) of Fisher’s equa-
tion, with j5x2vt being the coordinate in the comovin
frame of reference, is a propagating front with speedv.0
and satisfies the ‘‘steady-state’’ ordinary differential equ
tion
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1 f ~u!50, ~1!

with u(2`)51, u(`)50. Note that any speedv.v* will
give a monotonic front, though not the observed one. T
selection criteria seek to determine this lowest speedv* ,
without solving the initial value problem, selecting thus o
among the multiple possible fronts invading the unsta
state. If the selected speed is determined by the linear o
terms alone, we have the pulled casev* 52Af 8(0) ~linear
marginal stability!. If linear analysis fails, we have th
pushed casev* .2Af 8(0) ~nonlinear marginal stability!. In
the case of fronts invading a metastable state, though,
one front is possible on the interval (2`,`), and hence the
selection is automatic@3#.

We shall adopt here a unifying approach, showing t
there exists a single selection principle at work for both
metastable and unstable cases, and for the regimes of li
and nonlinear marginal stability alike. This approach explo
the fact that the observed front is translationally invariant
the comoving frame of reference, even on a largefinite in-
terval, in the sense that its location is effectively independ
of the ends of the interval. We solve then the steady-s
equation of motion on a large finite interval for an arbitra
given speedv, subject to the appropriate boundary cond
tions, obtaining a certain solution. This solution, howev
will have approximate translational symmetry, thus beco
ing a physically observable front, only for a certain value
v. It is this valuev* of v that is experimentally observed
Thus the selected front is the one that is effectively trans
tionally invariant on a large finite interval, in the comoving
frame of reference.

Indeed, let us assume thatu(j) is the solution of Eq.~1!
subject to the boundary conditionsu(L1)51 and u(L2)
50, with L1!L2. There is only one such solution for
given velocityv. We define the continuous potentialV(u),
wheref (u)52]V/]u. We multiply Eq.~1! with du/dj and
integrate fromL1 to L2, obtaining then
7802 ©2000 The American Physical Society
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v5
V~0!2V~1!2 1

2 w2~L2!1 1
2 w2~L1!

E
L1

L2
w2~j!dj

, ~2!

with w(j)5du/dj. If u(j) is going to be a physically ob
servable front on this large, but finite interval, it will have
be essentially translationally invariant. This means t
du/dj will be effectively zero in the regions close to th
boundaries,u having reached a fixed point there. Cons
quently, w(L1) and w(L2) will tend to zero, while
*L1

L2w2(j)dj will be finite and practically independent ofL1

andL2, asL1→2` andL2→`. Hence the speedv of Eq.
~2! becomes independent of the end points of the inter
acquiring a unique value. In other words, only the front w
that particular speed can be translationally invariant.

The requirement that the front be independent of the e
of the finite interval selects, therefore, the speed

v* 5@V~0!2V~1!#Y E
L1

L2
w2~j!dj, ~3!

with L1→2` and L2→`, as the speed of the physical
observed front. Note that no distinction has been made h
between metastable and unstable states. Indeed, givenany
particular speedv, we can find a front interpolating betwee
the stable and the unstable or metastable state, as we
demonstrate below, provided the solution is found on a fin
interval. As the boundaries go to infinity, the value of t
speed is restricted tov* and the front becomes the one co
responding to the speed of Eq.~3!.

II. ANALYTIC EXAMPLES

We shall demonstrate the proposed selection princ
through analytic and numerical work, both for the unsta
t

-
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s
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e

le
e

and metastable cases. We shall adopt for our analytic w
the continuous potential

V~u!5a~124u2!/8 if 0<u< 1
2 ,

~4!

5n~122u!~322u!/8 if u> 1
2 ,

where n.0 and a51 or 21, depending on whether th
stateu50 is unstable or metastable, respectively. The co
spondingf (u),

f ~u!5au if 0<u< 1
2 ,

~5!

5n~12u! if u>1/2,

is piecewise linear and leads to exact analytic solutions
similar piecewise linear model, but withj in the interval
(2`,`), has been used for a discrete reaction-diffus
equation@4#. Piecewise parabolic potentials, always on t
interval (2`,`), have been used in nucleation and cryst
lization problems as well@5#.

Equation ~1! will be solved subject to the condition
u(L1)51, u(L2)50, whereL1!0!L2. We shall assume
that the midpoint of the front occurs at the pointj0, with
u(j0)5 1

2 , noting that bothu(j) anddu/dj have to be con-
tinuous at that point. There are thus five boundary conditi
that have to be satisfied, whereas the solution will invo
five unknown parameters for any given value ofv, namely
j0 and two constants for each linear piece off (u). We ex-
pect, therefore, a unique solution for each value ofv.

Indeed, the exact solution of Eq.~1! for the f of Eq. ~5! is
u~j!512
1

2
ev(j02j)/2

sinh@Av214n~j2L1!/2#

sinh@Av214n~j02L1!/2#
if L1<j<j0

5
1

2
ev(j02j)/2

sinh@Av224a~j2L2!/2#

sinh@Av224a~j02L2!/2#
if j0<j<L2 , ~6!
ot
la-

s

-

wherej0 satisfies

2v5Av214n coth@Av214n~j02L1!/2#

1Av224a coth@Av224a~j02L2!/2#. ~7!

These relations hold even ifv2<4a. The solution of Eq.~7!
givesj0 as a function of the speedv.

A. Unstable case:aÄ1

~i! We examine the casev.2 first. If we requireL1

!j0!L2, then Eq.~7! reduces toAv2245Av214n22v.
This equation has a real solution,v5v* 5(n11)/A2n22,

providedn>3. In other words, for that particular value ofv,

the midpointj0 can be anywhere in the interval and cann
be determined, rendering thus the front effectively trans
tionally invariant on the finite domain@L1 ,L2#. The value
v* is therefore the selected speed ifn>3. In fact, the depar-

tures ofv from v* are minuscule and fall exponentially a
the ends of the interval go to infinity.

Sincev* .2 whenn.3, we have a pushed case. If, how

ever,n,3, Eq. ~7! yields
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j0'L112
coth21@~2v1Av224!/Av214n#

Av214n
, ~8!

and the front sticks to the left boundary.
~ii ! Consider the casev,2 next. Equation~6! shows then

that on the interval@j0 ,L2# the solutionu(j) is proportional
to sin@A42v2(j2L2)/2# and has multiple roots. Our fron
though, has to be monotonic, with no overshooting occ
ring. Thusu(j) must become zero only on the boundaryL2.
Therefore, the pointr 5L2 22p/A42v2, where the above
sine becomes zero, must lie outside the interval@j0 ,L2#, and
hencej0.r . In that case, Eq.~7! yields

j05L22
p

A42v2
1

2

A42v2
tan21

3S 22v1Av214n coth@Av214n~j02L1!/2#

A42v2 D .

~9!

This exact equation holds forv,2 and all values ofn, and
determines the locationj0 of the midpoint of the monotonic
front. Thus Eqs.~7! and~9! determine fullyj0 for a givenv.
In fact, if n,3 andv is just below 2, Eq.~9! yields

j0'L222p/A42v22~An1122!21, ~10!

or equivalently

v'A424p2/@L22j01~22An11!21#2.

Thusv has a plateau as a function ofj0 at the valuev52 if
n,3.

Figure 1 showsv as a function of the midpointj0 for the
casesn59 and n52, for the potential of Eq.~4! with a
51. Forn59, the selected speed isv* 52.5 ~pushed case!.
We see that forv.2.5, the front is located close toL1, while
it shifts abruptly toL2 when the speed becomes less thanv* .
When v is equal tov* , the graph has a plateau, indicatin

FIG. 1. The speedv as a function of the midpointj0 of the front
invading the unstable state, for thef (u) of Eq. ~5!, with L15215
and L2515. The plateau is atv52.5 for n59 and atv52 for n
52. All quantities are dimensionless.
r-

that for the most partj0 is undetermined, the solution bein
thus effectively translationally invariant. For the casen52,
on the other hand, the front is located atL1 whenv.2, as
indicated by Eq.~8!, while for v just below 2 the location of
the front shifts abruptly toL2, as indicated by Eq.~10!. We
see thus the appearance of a plateau atv52 if n52. For that
value ofv, the front’s location is rather undetermined, ind
cating that the front has acquired effectively a translatio
invariance. The selected speed is thusv* 52 ~pulled case!.

Our analytic example indicates then that forn.3 we
have the pushed case, the selected speed beingn
11)/A2n22, while for n<3 we have the pulled case, th
selected speed beingv* 52. In both cases the selected spe
corresponds to a plateau in the graph ofv versusj0, due to
the emergence of an approximate translational invarianc
the front at that speed.

B. Metastable case:aÄÀ1

If n.1, the stable state is atu51 and the metastable on
is at u50. The boundary conditions are once moreu(L1)
51, u(L2)50, u(j0)5 1

2 , along with continuity ofu and
du/dj at j0. For a given value ofv, there are then five
boundary conditions and five unknown parameters, two c
stants for each linear piece plusj0. There is thus a single
solution of Eq. ~1! for any given value ofv. This is the
solution given by Eqs.~6! and~7!, but with a521. We can
show that Eq.~7! reduces tov5v* 5(n21)/A2n12 if L1
!j0!L2. In other words, for that particular value ofv the
midpoint j0 can be anywhere in the interval, leaving th
location of the front undetermined. The front acquires th
an effective translational invariance at that speed. This tra
lational invariance is recognized in Fig. 2~a!, wheren57, as
a plateau in the graph ofv versusj0 at the speedv* 51.5.

Note that there is a solution to the metastable problem
anyv on a finite domain in the comoving frame of referenc
but only for onev on the infinite domain. Indeed, if the
metastable problem is solved on (2`,`), thenj0 cannot be

FIG. 2. ~a! The speedv as a function of the midpointj0 of the
front invading the metastable state, for thef (u) of Eq. ~5!, with n
57, L15215, andL2515. The plateau is atv51.5. ~b! The
speedv as a function of the pointj0 of the front invading the
metastable state, for thef (u) of Eq. ~11!, with b5

1
8 , L15215, and

L2515. The plateau is atv51.75.
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determined due to the exact translational symmetry, leav
us thus with five boundary conditions but only four unknow
parameters, two for each linear piece. Consequently,v will
also have to be considered as a parameter to be determ
giving thus a solution only for a unique value ofv @3#, which
is precisely the one selected by our selection principle. O
semi-infinite domain, on the other hand, a continuum of v
ues is possible forv @6#.

In the unstable case, exact translational symmetry
(2`,`) reduces again the number of unknown parame
by one (j0), but the boundary condition atu50 is trivially
satisfied due to the existence of two decaying exponent
and thus we are left with four boundary conditions and fo
unknown parameters, two for each linear piece, for a gi
value of v. Solutions are thus possible for a continuum
values ofv.

III. NUMERICAL EXAMPLES

We can demonstrate our selection principle numerica
as well, for the case

f ~u!5u~b1u!~12u!/b, ~11!

where for 0,b,1 the statesu52b, u50, andu51 are
metastable, unstable, and stable, respectively. In fact, it
this particular choice off (u) that was used when the con
cepts of linear and nonlinear marginal stability were fi
proposed@7#. That study found that for 1.b. 1

2 , the se-
lected speed for the front invading the unstable state isv*

FIG. 3. The speedv as a function of the midpointj0 of the front
invading the unstable state, for thef (u) of Eq. ~11!, with L1

5215 and L2515. The plateau is atv52 for b51 and atv
52.5 for b5
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52, while for 0,b, 1
2 it is v* 5(2b11)/A2b. For the

front invading the metastable state, the selected speed
found to be (12b)/A2b.

We have solved Eq.~1! numerically on a finitej domain
for the f (u) of Eq. ~11!, with b5 1

8 , subject to the boundary
conditions u(L1)51, u(L2)52b ~metastable case!. We
found that the plot ofv versus the characteristic pointj0 of
the front, wherej0 is defined through the relationu(j0)
5 1

2 , has a plateau atv51.75 @see Fig. 2~b!#, indicating that
at that speed the solution has become approximately tran
tionally invariant on the finitej domain. The speed on th
plateau is precisely the one selected by the marginal stab
criterion @7#.

Furthermore, we have solved Eq.~1! numerically on a
finite j domain for thef (u) of Eq. ~11!, with b51 andb
5 1

8 , subject to the boundary conditionsu(L1)51, u(L2)
50 ~unstable case!. We find again that the plot ofv versus
j0, whereu(j0)5 1

2 , has a plateau atv52 andv52.5, re-
spectively~see Fig. 3!, indicating that the solution acquire
effectively translational invariance there. These values
once again the ones known to be selected@7#.

IV. CONCLUDING REMARKS

We see then that requiring the solution to have appro
mate translational invariance on a finite interval in the c
moving frame of reference results in the selection of a sp
for the front in both the metastable and unstable cases.
speed is precisely the one given by marginal stability.
similar selection of a single velocity occurs when a cutoff
introduced, albeit on an infinite domain@8#. The importance
of the translational invariance has also been noted in con
tion with the precursors of the propagating fronts@9#. Indeed,
the selected solution is the only one with a legitimate tra
lation mode in its stability spectrum. Thus one way of u
derstanding the marginal stability of the selected solution
through requiring that the stability operator of a physica
realizable solution possess a translation zero mode.

We can adopt then a selection principle that reads ‘‘
selected front is the one that is approximately translation
invariant on a large finite interval, with respect to the como
ing frame of reference.’’ This principle is very easy to impl
ment for both the metastable and unstable cases, espec
numerically. Indeed, it suffices to solve the comoving fram
equation on a large finite interval. For large speeds, we
pect the midpoint of the front to be close to the left boun
ary. As the speedv is lowered, the midpoint suddenly move
to the right boundary. The speedv* at which this sudden
move occurs is the speed selected by the physically obse
front.
-
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