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Emergence of approximate translation invariance in finite intervals as a speed selection
mechanism for propagating fronts
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We introduce a velocity selection criterion for fronts propagating into unstable and metastable states. We
restrict these fronts to lardaite intervals in the comoving frame of reference and require that their centers be
insensitive to the locations of the ends of the finite intervals, thus exhibiting effectively an approximate
translation invariance. Only one monotonic front has this behavior, and its velocity is the one that is physically
selected. We present analytic results in the case of piecewise parabolic potentials and numerical results in other
cases.

PACS numbse(s): 82.40.Ck, 05.45-a, 47.54+r

|. THE SELECTION PRINCIPLE

—+v—+f(u)=0, (1)

In many systems rendered suddenly unstable, propagating dé

fronts appear. The determination of the speed of front propa-

gation into an unstable state has attracted attention recently,

since it cannot be achieved by simply solving the differentialwith u(—=)=1, u(«)=0. Note that any speed>v* will

equation in the comoving frame of reference on a onegive a monotonic front, though not the observed one. The

dimensional infinite domain. Indeed, there are many suclelection criteria seek to determine this lowest spe&d

solutions on such a domain, even though the propagatingithout solving the initial value problem, selecting thus one

front in practice always relaxes to a unique shape and veloggmong the multiple possible fronts invading the unstable

ity. Selection principles have thus been formulated to detergiaie if the selected speed is determined by the linear order

mine thg ob.servablle front, ywthout hgvmg to solve d're.Ct.lyterms alone, we have the pulled case=27(0) (linear
the partial differential equation of motion for a range of ini- . . . . .
{narglnal stability. If linear analysis fails, we have the

tial conditions. These principles have involved concepts o . ) .
P b P pushed case* >2+/f’(0) (nonlinear marginal stabilijy In

linear and nonlinear marginal stability, of structural stability, g g
and of causalitf1], and all of them try to deal with the the case of fronts invading a metastable state, though, only

puzzle of the reduction of the multiple solutions to the single®n€ front is possible on the intervat-¢<,>), and hence the
observed one. All these selection principles examine th&€lection is automatig3].
wave from the viewpoint of the moving front, the corre- We shall adopt here a unifying approach, showing that
sponding wave equation being reduced then to an ordinarthere exists a single selection principle at work for both the
differential equation involving the speed of propagation. Mmetastable and unstable cases, and for the regimes of linear
This speed has a unique value if the front is invading a metaand nonlinear marginal stability alike. This approach exploits
stable state, but not so for the case of invasion into an urthe fact that the observed front is translationally invariant in
stable state. The latter case has consequently attracted malse comoving frame of reference, even on a lafigée in-
of the attention. terval, in the sense that its location is effectively independent
The selection principles mentioned above have beewnf the ends of the interval. We solve then the steady-state
based on the study of Fisher’'s dimensionless equatipn, equation of motion on a large finite interval for an arbitrary
= U+ f(u), on the interval o,) with f(0)=f(1)=0, given speedv, subject to the appropriate boundary condi-
the statesu=0 andu=1 being unstable and stable fixed tions, obtaining a certain solution. This solution, however,
points, respectively. Aronson and Weinberget] have  will have approximate translational symmetry, thus becom-
shown that sufficiently localized initial conditions will ing a physically observable front, only for a certain value of
evolve into an observable front propagating with spe&d  v. It is this valuev* of v that is experimentally observed.
providedf >0 on(0,1). This selected spead' is the lowest Thusthe selected front is the one that is effectively transla-
speed for which the above partial differential equation adtionally invariant on a large finite intervalin the comoving
mits a monotonic front joining the stable state=1 to the frame of reference.
unstable stateu=0, and it satisfiesv* =2+/f’(0). Any Indeed, let us assume tha¢) is the solution of Eq(1)
monotonic traveling-wave solution(¢) of Fisher's equa- subject to the boundary conditions(L;)=1 and u(L,)
tion, with é=x—uvt being the coordinate in the comoving =0, with L;<L,. There is only one such solution for a
frame of reference, is a propagating front with speee0  given velocityv. We define the continuous potenti{u),
and satisfies the “steady-state” ordinary differential equa-wheref(u)=—dV/du. We multiply Eq.(1) with du/d¢ and
tion integrate fromL, to L,, obtaining then
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V(0) = V(1) — 3wA(L,)+ twA(L,) and met_astable cases. We shall adopt for our analytic work
v= » , (2)  the continuous potential
f ) w(€)dé
! V(u)=a(l-4u?)/8 if O<u<},
with w(&)=du/dé¢. If u(€) is going to be a physically ob- 4
servable front on this large, but finite interval, it will have to )
be essentially translationally invariant. This means that =v(1-2u)(3-2u)/8 if u=3,

du/d¢ will be effectively zero in the regions close to the
boundaries,u having reached a fixed point there. Conse-
quently, w(L;) and w(L,) will tend to zero, while
ftiwz(g)dg will be finite and practically independent af;

andL,, asL;— — andL,—0. Hence the speed of Eq.

(2) becomes independent of the end points of the interval, )

acquiring a unique value. In other words, only the front with f(uy=au if O<us=s,

that particular speed can be translationally invariant. (5)
The requirement that the front be independent of the ends

of the finite interval selects, therefore, the speed =v(1-u)

where v>0 anda=1 or —1, depending on whether the
stateu=0 is unstable or metastable, respectively. The corre-
spondingf(u),

if u=1/2,

Lo
v* =[V(0)—V(1)]/ f w2(£)dé, (3 is piecewise linear and leads to exact analytic solutions. A
! similar piecewise linear model, but with in the interval
(—,»), has been used for a discrete reaction-diffusion

with L;— —o andL,—, as the speed of the physically . . . . .
observed front. Note that no distinction has been made hefgduation[4]. Piecewise parabolic potentials, always on the

between metastable and unstable states. Indeed, givgn Nterval (—=,), have been used in nucleation and crystal-
particular speed, we can find a front interpolating between !iZation problems as we(lS]. . y

the stable and the unstable or metastable state, as we shajEquation (1) will be solved subject to the conditions
demonstrate below, provided the solution is found on a finit¢!(L1) =1, u(L5)=0, whereL,<0<L,. We shall assume
interval. As the boundaries go to infinity, the value of thehat the midpoint of the front occurs at the pogy, with

_1 H
speed is restricted to* and the front becomes the one cor- Y(£0) =2, noting that botfu(¢) anddu/d¢ have to be con-
responding to the speed of E®). tinuous at that point. There are thus five boundary conditions

that have to be satisfied, whereas the solution will involve

five unknown parameters for any given valuevgfnamely

&y and two constants for each linear pieceféfl). We ex-
We shall demonstrate the proposed selection principlgect, therefore, a unique solution for each value of

through analytic and numerical work, both for the unstable Indeed, the exact solution of E(l) for thef of Eq. (5) is

II. ANALYTIC EXAMPLES

o2 SINM Vul+4v(E—11)12]

f Li<¢é<
sinH o2+ 4v(&—L,)/2] 1=8<do

1
= [ — v(§ -
ué)=1 2e 0

Eev@o—e)/z sin Vu?—4a(é—1,)/2]
2

= f &o=é&<L,, (6)
sinH Vo?—4a(&—L,)/2] fosé=le
|
where ¢, satisfies This equation has a real solution=v* =(v+1)/y2v—2,
20 = JoZF 4 coth Vo2 F 4v(£9—L1)/2] providedv=3. In other words, for that particular value of

the midpointé, can be anywhere in the interval and cannot
+\v?—dacoti\w?—4a(&—Ly)/2]. (7))  be determined, rendering thus the front effectively transla-
tionally invariant on the finite domaipL,,L,]. The value
v* is therefore the selected speed i 3. In fact, the depar-
tures ofv from v* are minuscule and fall exponentially as
A. Unstable case:a=1 the ends of the interval go to infinity.
(i) We examine the case>2 first. If we requirel, Sincev* >2 whenv>3, we have a pushed case. If, how-

<&9<L,, then Eq.(7) reduces toJv?—4=\v?+4v—2v. ever,v<3, Eq.(7) yields

These relations hold evenif<4a. The solution of Eq(7)
gives &g as a function of the spead
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FIG. 1. The speed as a function of the midpoirg, of the front
invading the unstable state, for tieu) of Eq. (5), with L;=—15
andL,=15. The plateau is at=2.5 for v=9 and atv=2 for v
=2. All quantities are dimensionless.

2coth’l[(2v+ Vu2—4)[\v?+4v]
\/vz-l- 4y ,
and the front sticks to the left boundary.

(i) Consider the case<2 next. Equatior{6) shows then
that on the interval &,,L,] the solutionu(¢) is proportional

§o~Lyt

8

to sif\4—v?(é—L,)/2] and has multiple roots. Our front,
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FIG. 2. (a) The speed as a function of the midpoirg, of the

front invading the metastable state, for th@) of Eq. (5), with v

=7, Ly=-15, andL,=15. The plateau is at=1.5. (b) The

speedv as a function of the point, of the front invading the
metastable state, for tH¢u) of Eq.(11), withb=3, L,=—15, and
L,=15. The plateau is at=1.75.

that for the most parg, is undetermined, the solution being
thus effectively translationally invariant. For the case 2,
on the other hand, the front is locatedlgt whenv>2, as
indicated by Eq(8), while forv just below 2 the location of
the front shifts abruptly td,, as indicated by Eq10). We

though, has to be monotonic, with no overshooting occursee thus the appearance of a plateau=a2 if »=2. For that

ring. Thusu(&) must become zero only on the boundéary
Therefore, the point=L, —2/\4—0v?, where the above
sine becomes zero, must lie outside the intef¢alL ], and
henceéy>r. In that case, Eq(7) yields

T 2
=L,— + tan !
fo=le VA—v?  JA—v?
" —2v+ \v?+4v cot Ju?+4v(&y—Ly)/2]

Va—v?
€)

This exact equation holds fer<2 and all values o#, and
determines the locatioé, of the midpoint of the monotonic
front. Thus Eqs(7) and(9) determine fully, for a givenu.
In fact, if v<<3 anduv is just below 2, Eq(9) yields

Eo~L—2mA—v?—(Vr+1-2)"1

or equivalently

(10

v~ \/4—4772/[|_2—§o+(2— Vr+1)~12

Thusv has a plateau as a function &f at the valuey =2 if
r<3.

Figure 1 shows as a function of the midpoirg, for the
casesr=9 andv=2, for the potential of Eq(4) with «
=1. Forv=9, the selected speedu$ =2.5 (pushed cage
We see that fov > 2.5, the front is located close tg, while
it shifts abruptly toL, when the speed becomes less than

value ofv, the front’s location is rather undetermined, indi-
cating that the front has acquired effectively a translational
invariance. The selected speed is thiis=2 (pulled casg

Our analytic example indicates then that for-3 we
have the pushed case, the selected speed being (
+1)/y2v—2, while for v<3 we have the pulled case, the
selected speed being =2. In both cases the selected speed
corresponds to a plateau in the graphvofersusé,, due to
the emergence of an approximate translational invariance of
the front at that speed.

B. Metastable case.a=—1

If v>1, the stable state is at=1 and the metastable one
is atu=0. The boundary conditions are once mard.,)
=1, u(L,)=0, u(&)=3, along with continuity ofu and
du/d¢ at &,. For a given value ob, there are then five
boundary conditions and five unknown parameters, two con-
stants for each linear piece pldg. There is thus a single
solution of Eq.(1) for any given value ofv. This is the
solution given by Eqs(6) and(7), but witha=—1. We can
show that Eq(7) reduces tw =v* =(v—1)/y2v+2 if L
<¢9<L,. In other words, for that particular value ofthe
midpoint £, can be anywhere in the interval, leaving the
location of the front undetermined. The front acquires thus
an effective translational invariance at that speed. This trans-
lational invariance is recognized in Fig.a2, wherev=7, as
a plateau in the graph af versusé, at the spee@d* =1.5.

Note that there is a solution to the metastable problem for
anyv on a finite domain in the comoving frame of reference,
but only for onev on the infinite domain. Indeed, if the

Whenv is equal tov*, the graph has a plateau, indicating metastable problem is solved of ¢0,), then&, cannot be
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35 - ‘ ‘ ‘ ‘ =2, while for 0<b<3} it is v*=(2b+1)/\2b. For the
front invading the metastable state, the selected speed was
3.0 1 found to be (1-b)/+/2b.
t b=1/8 We have solved Eq1) numerically on a finite¢ domain
1 for the f(u) of Eq. (11), with b= 3, subject to the boundary
conditions u(L;)=1, u(L,)=—b (metastable ca$e We
found that the plot ob versus the characteristic poi&g of
the front, where&, is defined through the relation(&g)
=1, has a plateau at=1.75[see Fig. 2b)], indicating that
at that speed the solution has become approximately transla-
tionally invariant on the finite¢ domain. The speed on the
plateau is precisely the one selected by the marginal stability
. ‘ ‘ ‘ criterion[7].
-15 -10 -5 0 5 Furthermore, we have solved E@L) numerically on a
% finite ¢ domain for thef(u) of Eg. (11), with b=1 andb
=%, subject to the boundary conditiongL,)=1, u(L,)
=0 (unstable case We find again that the plot af versus
&y, Whereu(&y) =3, has a plateau at=2 andv=2.5, re-
spectively(see Fig. 3, indicating that the solution acquires
effectively translational invariance there. These values are

determined due to the exact translational symmetry, Ieavin((JJ)nCe again the ones known to be seledted

us thus with five boundary conditions but only four unknown

parameters, two for each linear piece. Consequenthy;ll IV. CONCLUDING REMARKS

also have to be considered as a parameter to be determined, . . .
We see then that requiring the solution to have approxi-

giving thus a solution only for a unique valuew{3], which mate translational invariance on a finite interval in the co-

Eeﬂie-ﬁ:zﬁ:%/etgirﬁzsnSilr?(t:idott)r{e?urlrasn?jle;“ggn?i::ﬂlcjlr%l%fSgl-?nowng frame of reference results in the selection of a speed
. i ' ' for the front in both the metastable and unstable cases. This
ues is possible fov [6].

speed is precisely the one given by marginal stability. A
r@imilar selection of a single velocity occurs when a cutoff is
?ntroduced, albeit on an infinite domdiB]. The importance

§of the translational invariance has also been noted in connec-
and thus we are left with four boundary conditions and four, fon with the precursors of the propagating frofd§ Indeed,

. . .~ ""the selected solution is the only one with a legitimate trans-
unknown parameters, two for each linear piece, for a given

I fu. Soluti th ible f i fIation mode in its stability spectrum. Thus one way of un-
vaiue otv. Solutions are thus possible for a continuum o derstanding the marginal stability of the selected solution is

25 i

o 2.0 _" ................................................................

FIG. 3. The speed as a function of the midpoirg, of the front
invading the unstable state, for tiféu) of Eq. (11), with L,
=-—15 andL,=15. The plateau is at=2 for b=1 and atv
=25forb=3%.

(—,%) reduces again the number of unknown paramete
by one §g), but the boundary condition at=0 is trivially

values ofv. through requiring that the stability operator of a physically
realizable solution possess a translation zero mode.
IIl. NUMERICAL EXAMPLES We can adopt then a selection principle that reads “the
We can demonstrate our selection principle numerically_selec_ted front is the one Fhat is app.roximately translationally
as well, for the case invariant on a large finite interval, with respect to the comov-
ing frame of reference.” This principle is very easy to imple-
f(uy=u(b+u)(1—u)/b, (1D ment for both the metastable and unstable cases, especially

numerically. Indeed, it suffices to solve the comoving frame
where for 0<b<1 the statess=—b, u=0, andu=1 are equation on a large finite interval. For large speeds, we ex-
metastable, unstable, and stable, respectively. In fact, it wgsect the midpoint of the front to be close to the left bound-
this particular choice of (u) that was used when the con- ary. As the speed is lowered, the midpoint suddenly moves
cepts of linear and nonlinear marginal stability were firstto the right boundary. The speed at which this sudden
proposed[7]. That study found that for £b>3, the se- move occurs is the speed selected by the physically observed
lected speed for the front invading the unstable state*is front.
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